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Test particle in a quantum gas
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A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with
a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system.
In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single
generator master equation for the description of quantum Brownian motion in which the correction due to
guantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics
are compared.
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[. INTRODUCTION dissipation relation, linking friction and diffusion coeffi-
cient9. A class of models, usually named quantum Brownian
The study of the dynamics of a particle coupled to a genimotion[9], given by time evolutions with a non-Hamiltonian
eral many-body system plays a relevant role in modern quarPart mapping the algebra of operators at most bilinear in the
tum physics, both with respect to foundations and applicaoperators§< ande of the patrticle into itself, seem to be the
tions of quantum theory. On the one hand it provides a mosiost natural candidate in order to obtain equations of motion
simple example of quantum dynamics of a nonisolated sysanalogous to the classical ones, leading in particular to a
tem, possibly offering a manageable arena for a truly microfriction force proportional to velocity. On the mathematical
scopic approach, which might shed some light on mechaside, generators of time evolution semigroups satisfying
nisms of dissipation and decoherenicd; these last two these requirements have been fully characterized through the
issues are now of outstanding relevance in connection witlproperty of complete positivity, which formally amounts to
the rapidly growing experimental ability to deal with thor- the requirement that positivity of the time evolution is pre-
oughly quantum-mechanical phenomena, checking for theiserved even in the presence of coupling without interaction
coherence propertie@t the single-particle level think, for to another system and leads to a typical expression for the
example, of the recent cavity QED and ion trapping experi-generators of these semigroups, known as the Lindblad struc-
ments[2], while at the many-body level, Bose-Einstein con-ture [10]. This has led to a wide literature developing this
densation is a most interesting examp8d). On the other axiomatic approachll], together with a large number of
hand, plenty of interesting physical problems may be modmore or less phenomenological models in which similar
eled in this way and among these, in particular, motion orstructures are obtained, though not always preserving com-
diffusion of charged or neutral particles in gases, liquids, omplete positivity (in this connection see Ref12]). Though
solids. The interaction of a test particle with a dilute or non-warranting positivity of the statistical operator, complete
interacting gas is strictly connected to the problem of a quanpositivity is by itself no fundamental requirement as recently
tum generalization of the Boltzmann equat[di, whose ev-  stressed13], so that despite its extensive use in many fields
erlasting relevance has recently been stressed by thef physics, ranging from quantum optics to quantum com-
experimental realization of quantum degenerate samples @funication, the study of the conditions and approximations
weakly interacting bosons or fermiofi3,5]; in fact for the  under which it emerges from microphysical models is
study of these systems, resort is often made to a quantustrongly desirable.
Boltzmann transport equatidi®]. A particularly interesting In a recent work, the derivation at a fundamental level of
situation arises if the maddl of the test particle is much a completely positive master equation for a Brownian par-
bigger than the mass of the particles, which make up the ticle interacting with a free Boltzmann gas has been given,
gas; the so-called Brownian motion, which serves as a pardased on a microphysical model developed for the descrip-
digmatic example in the description of irreversible and dis-tion of particle matter interactiofl4,7]. The Lindblad equa-
sipative processes. The description of the phenomenon is stiilon thus obtained can be written with a single generator and
debated at a quantum levedee Refs[7,8] and references temperature-dependent friction and diffusion coefficients
cited thereif, even though well settled by now at the classi-were determined in terms of the scattering cross section. In
cal level in terms of Langevin or Fokker-Planck equati@ihs this paper we give a major extension of the previous model,
took however almost a century from the observation bykeeping also quantum statistics of the gas into account.
Brown to the first successful theoretical description by Ein-Moreover, before going over to the Brownian limit, in which
stein, which led to the first example of a fluctuation- the ratio between the masses is much smaller than one, one
sees that the generator of the master equation is expressed in
terms of the dynamic structure factor of the medium, first
*Email address: bassano.vacchini@mi.infn.it introduced by van Hovgl5]. This turns out to be true also
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for an interacting system, thus linking in full generality the mogeneous system, so as to use as quantum numbers mo-

dynamics of the test particle to the density fluctuations of thenentum eigenvalues, thus obtaining with a Fourier trans-

system[see Eq(20)]. The property of complete positivity is form, an expression depending only on the modulus of the

retained in the general case under some requirements on theomentum transfer:

energy dependence of the dynamic structure factor, which

are exactly fulfilled in the case of Boltzmann particles dealt

with in Ref.[7]. The Brownian limit is then considered, thus Th=>, 5p”+pk,ph+p#t(|pﬂ—p7,|)b;bﬂ, @

obtaining the correction at finite temperature due to quantum e

statistics to the equation describing quantum Brownian mo-

tion [see Eq(27)]. In terms of the fugacity this correction  whereb', b denote creation and destruction operators in the

takes a remarkably simple forfsee Eq(29)]. Fock space of the macrosystem. Restricting to the case of a
The paper is organized as follows: in Sec. Il we considefree gas of Bose or Fermi particles, the eigenvectorsl gf

the general structure of the master equation and its connegan be characterized as a set of occupation nunthersla-
tion to the dynamic structure factor. In Sec. Ill we obtain thetive to particles with a given momentum,, so that| &)

correction due to quantum statistics to the master equatiog|{n§}> and the matrix eIemerszbTb |£) can be readily
. . . . al/» M

describing quantum Brownian motion, together with the re-g,51yated restricted to the primed sum fot ¢, since in the

lationship between the friction coefficients for Boltzmann Of case = ¢, the contributions to the master equatidh can-

quantum statistics. In Sec. IV we comment on our resultg.q| ot 5enoting byj=p,—p,, the momentum transferred

indicating potential future developments. to the test particle and by&Equ(p)=(p+q)2/2M+(pM

—q)?/2m—p?/2M —p%/2m the difference in energy before
and after the collisionNl being the mass of the test particle
with momentump, m the mass of the gas particjesand

_ ~ supposing the statistical operatorto be quasidiagonal in
Let us briefly recall the structure of the master equatiormomentum representation, according to its slow variability,

obtained in Ref[14] for the description of the subdynamics one sees that Eql) for a free test particle reduces [t]
of a particle interacting with a macroscopic system supposed

Il. GENERAL STRUCTURE OF THE MASTER
EQUATION IN TERMS OF THE DYNAMIC
STRUCTURE FACTOR

to be at equilibrium. The result is valid on a time scale - [ ~p
much longer than microphysical collision time and describes d_Q__'_ o +2_7T " [{(q))? 2 2 (n,)
an interaction through two-particle collisions given by the dt f|2M @ h Z q op #
full T matrix. The master equation is given by
. p+p’
do [ | I X(limu—q))&[AEpﬂq( 2 ”
a:_%[Ho'Q]ﬁL%% LngLxg_E{Lx‘gLAg,Q} , ) )
| ) x eMaX(p)(plo[p’)(p'|e” (M
ith 1
W - E % % <nu>(1i<n,u—q>)
. (\[THIE)
<k|L)\§|h>=\/287T§E+E “E_E_is’ -
kTEATERT Ee X 8(AEp q(MNIpXpl.e} . 3)

whereH, is the Hamiltonian for the particle anglits statis-
tical operator, whileo™= X ;7| £)( | is the statistical opera-
tor for matter at equilibriumsr, being the statistical weights
related to its spectral decomposition. The vectansand| &)
are eigenvectors of the macrosystem Hamiltortifp with
eigenvalues, andE,, respectively, similarlyk) and|h) 7 Bp%I2m)
denote eigenvectors cb:lo with eigenvalue€,, andE,,. In (n)=
writing the equation we have neglected the slow energy de-

pendence of the T matrix, which would have brought a com-

mutator term proportional to the forward scattering ampli-accordingly,z denoting the fugacity, determined by the re-
tude, diagonal in momentum representation. The terms othejuirement> ,(n,)=N, and B=1/(kgT) the inverse tem-
than the commutator in Eq1) are linked to the dissipative perature. It is worthwhile introducing the more compact no-
behavior, which cannot be obtained in a Hamiltonian formal-tation
ism. Interactions at the microphysical level are typically
translationally invariant, so that a general ansatz for the T

where the+,— signs refer to Bose, Fermi statistics, respec-
tively, and

3

matrix describing two-body interactions is given tﬂﬁ :}f d°p, n 1+(n S(AE
— FEX Y (U (U= Yun(5) (), wherey, rare  2F PP TR ] (G () (1N, 0 0AEp P
field operators for the macrosystem. We now consider a ho- 4

066115-2



TEST PARTICLE IN A QUANTUM GAS PHYSICAL REVIEW E63 066115

wheren denotes the density of particles in the gas and the d20 M Zp, B
function Sg/r is in fact positive definite, so that E¢B) be- —_—=( )6< 2) —[t(aq)|?’S(q,E). (7)
comes derdEpr ﬁ p
do il p? . - B The dynamic structure factor is expressed in the general case
iy 7(2wﬁ)3nJ d3qlt(q)|? as the Fourier transform of the time-dependent pair-

correlation function with respect to energy and momentum
transfer, according to

) PP
X fd3pf d°p SB/F(qa

P\ L
)e"””q “Ip)(plelp’)

SAE)=5 dtfd3

X (p'[e”(MMax—3 f d3pSB/F(q,p){|p><p|,é}}- (5) |
Xex;{%—(Et—q-x)

dPy(N(Y)N(x+y,1)),
The integral in Eq(4) can be explicitly calculated both for f YN(Y y:0)

bosons and fermions giving at finite temperature the result (8)
Ser(Qp) =T 1 2mm? whereN(y) denotes the local particle density for the macro-
F P (27h)® nBq scopic system and ...) the ensemble average. Alterna-
tively the dynamic structure factor may be written in terms
% 1 of the Fourier transform of the density operabtfy), given
1-exp{(B12m)[20(q,p)g— 2]} by
1¥zexd —(BI2m)a?(q,p)] :
xlog| — = dye~ (/MIIN(y) = E byb, g, ©)
15 zexd —(Bl2m)[o(q,p)—a]]
© thus obtaining
whereo(q,p) = (1/29)[ (1+ a) g%+ 2a(p- )] is expressed in 1 1
terms of the dimensionless variahle=m/M, giving the ra- E)= _f dt el/MEY ot ¢ 10
tio between the masses. Expressi@) is exactly the dy- SEE=2 7N {Papq(V)- (10

namic structure factor for a free Bose or Fermi gas at finite

temperature, as one could realize from E4).[16] or from  Expression(10) through relation(7) allows a determination
the equivalent expression in terms of momentum trangfer of the equilibrium fluctuations of the system in terms of scat-
and energy transfe=q%/2M + p-g/M (note that we use as tering experiment§16] (think, for example, of the very in-
variables momentum and energy transferred to the test pateresting applications in the case of neutron scattering from

ticle) different states and isotopes of helilitt¥]). Coming back to
Eqg. (6) we note that in the limit of very small fugacity
2mm? 1 <1, one recovers the result for Maxwell Boltzmann particles
Spir(0,E) =+

27h)° n BE
(2mh)° nBq 1—e 1 27m

2
SMB(va) (27Tﬁ)3 nﬂq zexp{—ﬁgz(q p) ’ (11)

1Fzexd — (B/18m)(2mE+q?)%/9?]
17 zexd —(B/8m)(2mE— g% q?]]’

which in terms of momentum and energy transfer may also

written
where the dependence on the transferred momentum is, Ple e

this case, actually only through the modulus. In the following

we will use, according to convenience, both notati8g,p) —
and S(q,E), where E=AEq(p)=E,,q—E,=0%2M+p Sve(4.E) (27h)® npq
-g/M is the energy transfer. The dynamic structure factor is

an important physical quantity of direct experimental accessiRRecalling expressiot¥) for the dynamic structure factor one
essentially depending on the statistical properties of the madgmmediately realizes that the master equation given in Eq.
rosystem and the kinematics of the collision, appearing in th€3) can be written in terms of the dynamic structure factor
expression of the inelastic differential cross section for a parand exactly exhibits a Lindblad structure provided the dy-
ticle interacting with a macroscopic sample. The relation behamic structure factor evaluated at the arithmetic mean of
tween differential cross section and dynamic structure factoand p’ equals the geometric mean of its values at the two
was first derived by van Hove in the case of neutron scatterpoints. This identity holds true without approximations in the
ing [15] and for scattering from stafeto statep’ =p+q, is  case of expressiof22) for a Boltzmann gas in the Brownian
given per target particle, by limit considered in Ref[7]. In the general case this factor-

—.

1 27m? B (2mE+q?)?
- 8m q
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ization relies on an approximation linked to the quasidiago4introducing the following generator depending on the opera-
nality of the statistical operator. Keeping the linear relationtors x andp

betweenE and p into account, the approximation necessary

in order to retain complete positivity can be most meaning-

fully written Le/e(0,p,X) = eiMaX\Sy (q,p). (15
E+E’
S( a, T) ~S(q,E)vS(a,E") (120 This is a remarkably simple result sintg, only depends

on the generator of translations in momentum space and the
and will depend on the smoothness of the energy dependen@@erator valued dynamic structure factor. Let us note that
of Sin the relevant energy regiofnote that the neglected equation(13) or equivalently Eq.(14) is invariant under
terms are at least quadratic in the energy differgreeploit-  translation and rotation and in particular, a statistical opera-
ing Eqg. (12), Eq. (5) can be cast in the following Lindblad tor of the canonical forn@oce—b’(PZ/ZW, is a stationary solu-
structure granting positivity of the time evolution tion [18]. If instead of a free gas one considers a more gen-

eral medium characterized by a dynamic structure factor

do il p? .| 2w 5 O, S(q,p), provided the interaction between particle and me-
ai- 7lameel|t 7 (2mh) nj dqt(q)| dium still satisfies translation invariance as in E2).and an
approximation of the forn{12) holds, the master equation
5 e(i/ﬁ)q.;(\/SB/F(qafa)é\/SB/F(an))ei(i/h)q.;( (1_) still has the form(13) or equivalently(14) with L(q,p,X)
given by
L 1S, (13 P
2{ B/F(CLP),Q} i L(q,IS,;():e(I/ﬁ)q-x S(q,E))

which may be also written in a more manifest Lindblad form . . )
and therefore retains a Lindblad structure. To prove this we

go back to Eq.(1), which in the case of a homogeneous

dé_ LA 2T 3 33 ( )] 2 system using Eq(2) can be written
a——%[Ho,Qﬁ' = (2mh) nJ d>q[t(q)| Y 9 Eq
sos b ons @ 0.
X| Lg/e(d,pX) @ Lg/e( P, X) d_fz_%[Ho’Q]+£(Q) (16)

1 ~ ANAl A
- E{LE/F(qvpix)LB/F(qvprx)ag}}1 (14) with

2 > 5p,7+pf,pk+p”~t(|p#_pn|)<)\|b;b#|§>

~ nw
‘C(Q)_7 vaRT % |pf> Ek_EfJ’_Eg_E)\J’_iS
D L MUCCWERILY
X (Pl @] pn) e
K h é Eh_Eg+E§_E)\_i8
it t
. ) % Bp, +pipg+p, LIPL =P, (N[03D,,[€)
_g% Ek: % {|pf><pg|!9} Ef_Ek+E§_E)\_i8
72/ 5p7]r+pk'pf+p,u'~t’*(|plu‘,_p7]/|)<§|bj’4’b7]/|)\>
T 17)

Eq—Ex+E,—E,\+is

We now introduce the momentum transtg=p,—p,, q'=p, —p,, and the Fourier transform, of the density operator
given by Eq.(9), so that relabeling the index€%7) becomes
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1
+E§_E)\+|8

»’3(9)——2 Z Z T(q)T* (g")eWMaX py(plo|p’)(p'|e~ (/1) X
AT o Ep—Epiq

! e PR ANTx (! ~
pr,_E TAEEC <>\|pq|§>mf<§|pq M-+ 2 % % T(a)T*(q){Ip)pl, 0}

1 1

X . N pql &) me(&lpl/INY, (18)
Ep—EpqtEs~Ex—ie E,—E ,+E§—Ex+is< Pal€) mel€lpq )

p+q

where the primed sum ovegrandq’ means that the contribution fgr=q' =0 is left out, since in this case the two terms cancel
out. To proceed further, we express the denominators in terms of a Laplace transform, according to

(axig) 1= IwadTei(i/ﬁ)(aiia)r
ﬁ 0 1
thus obtaining

5(9)——2 E (@)t (q)etme X|p><p|g|p)<p e~ /md’ E f dre” (Em)ff dr'e M7
pp’ qq’

xextl = (i) AE(p) Tlexi] + (i/7)AEq (p) 7' K pgipg(7— 7)) 72 E @)t (@) {lp)pl.}

l © e © ,
XPL dTe’ﬁ,TfO dr’ e (&) exp[—(i/h)AEq(p)T]eX[:[—I—(i/fi)AEq,(p)Tr]<p;,pq(7__ ),

where( .. .) denotes the ensemble average og&} p,(t) the Heisenberg operatar’ (/")Hntp e~ (MMl and the more
compact notatlorzis Eq(P) =Ep+q— Ep for the energy transfer has been used. Since the system is supposed to be homogeneous,
the correlation function selects the contributions for whighq', and exploiting the identity

dE )
:f dt(?(t—[r'—r])=f dtfﬁexr[(uh)E(t—[r’—r])]
we have

£(e)—72 3 @™ p)(plo]p')(p'le D X—f dre” <s/h>rf d /e—@mwde
q

pp 0

R ; ’ ’ 1 (i/h)Ety T
xXexp{— (i/7)[AEq(p) —E]rjexp+ (i/h)[AE4(p') —E]7 }thf dte (pqpq(t)>

€ e ~ 1= - * 1 a—(elh) 7’
23 S @ PNl oty | dre [ et
pq 0 0

xf dEexp{—i/h[AEq(p)—E]T}exp[Jri/ﬁ[AEq(p)—E]T’}Ziﬁf dt elMEY plp (1)).

We can now meaningfully undo the Laplace transform, coming to

-~ 2 o~ . . N L .
L@)=5 2 2" [t@%"p)(plelp(ple
pp’

e 1 1 1 | e
X | dE—= . fdte('”’l)Et Tpg()—+ t(q)|?
f 7 E-AEq(P) e E_AE(p) _ie 27 (papa(0) =5 2 2" [E@Xlp)pl.}

deE— ! ! ! fdte(”ﬁ)Et(pr (1))
m E—AEy(p)—ie E-AEy(p)t+ie 27h arai /e
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If we now exploit the quasidiagonality @f linked to its slow variability, thus substituting in the denominators of the first term
p, p’ with the symmetric expressiof(p+p’), we obtain the expression

o@)=2" >3 ) 26950) (8l (oo~ [ it e 2 g 1)
1S S R0 2y | el (19
|
The correlation functions appearing in E49) are exactly 22 1

the dynamic structure factor multiplied By and evaluated Sg(q,p,a<1l)=7F
for a momentum transfeq and energy transferaEgy[ (p
+p’)/2] andAE(p), respectively, as can be seen by com-
parison with Eq.(10). To see under which conditions the
obtained master equatidm6) takes a Lindblad structure, we
consider an approximation of the for(h2), which will gen-

(27h)° nBq 1— eBla’2M+q-p/M]

15 ze (BIBMA® o= (B)[4*/2M + - pIM]

Xlog

15 ze (BIEMA® o+ (B2)[a7/2M + - p/M]

erally depend on the smoothness of the energy dependence (2D)
of the dynamic structure factor, but is actually less demand- 1 27m? ,

ing than it might seem, since in the expressitf) one has Sws(a,pa<l)=——— ze (BBm)g

to consider a sum ovep and p’ with the matrix elements (27h)” npq

(ple|p’) of the statistical operator. In the continuum limit we g q-p
therefore obtain the master equation Xexp[ —(BI2)| 54+ V” (22)

45 , or expressed in terms of momentum and energy transfer
0 NN -
SB/F(qv , & )_+(2’7Tﬁ)3 an 1_el3E

P

i
T alam®

f

2 -
+%(2wﬁ)3nf d3qlt(q)|?

X log

17 Ze(ﬂ/Bm)qze(ﬁm)E]

15 ze (BBM* g+ (BI2E

el/M%\S(q,p)@ VS(q,pre (M

X

1 2m7m?

1 o Sus(Q,E,a<l)= —— = — 7o (BEma’e=(FI2E
- E{sm,p),e}}, (20) (2mh)” nga
still satisfying the principle of detailed balang#6]. In the
Boltzmann case, as mentioned above, expres&@h ex-
which still has the forn{13), but is much more general since actly fulfills (12) and the generator in Eq15) takes the
now the dynamic strpcture factor does not nece;sarily departicularly simple form_B/F(q,6,;()oce(i/h)q»;<ef(ﬁ/4M)q-;3, S0
scribe a free gas. This result allows for the extension of thg a4 gne obtains for an isotropic medium the master equation
usefulness of the master equation to cases in which the COfjiven in[7]
relation function cannot be directly evaluated, but a suitable
phenomenological model is available, e.g., determined in do
terms of scattering experiments. —_—=

i .. A4Arm? [t(q)|? )
__ 3 —(pI8m)q
ﬁ[H01Q]+Z Bh j d q q €

dt
1. QUANTUM BROWNIAN MOTION AND QUANTUM X | eli1)a xg= (B14M)a:pp = (B14M)a: = (i/4)d X
STATISTICS
We are now interested in the Brownian limit=m/M _E{ef(BIZM)q»fJ é} _ (23)
<1, considering the dynamics of a free particle interacting 2 ’

through collisions with a gas of much lighter particles. Hav- . - .
ing an expression valid for both a Fermi or Bose gas, it isTO recover the equation describing quantum Brownian mo-

particularly interesting to evaluate the correction broughtion: One goes over to small momentum transfer, strongly
about by quantum statistics to the typical models of quantunf2vored by the kinematics of the collisions, considering
Brownian motion. In the limita<<1, expressiong6) and terms up to second order mor equivalently bilinear inx

(11) become, respectively, and p, thus obtaining an equation in close analogy to the
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classical description, with a friction force proportional to ve- the main results of this paper. Comparing E@S) with (24)

locity. The result for a Boltzmann gas is one sees that the friction coefficient given in the Boltzmann
A . case by

do i .. Dop ~ ~ -

—=—2[Ho,0]1-2> { —LP[x.[x,e]] -

dt h i=1| A B D — T m fds T o) 20 o (818M) G2

_ Yme=25 Dpp=23 7 qt(a)|°qe
Dux o on o L ors a5 (28
+—Zplpell+ goixiip.etl (24

with is now substituted by

YmB
Dpp 3 ,371 fd3Q|t a)l?qe” (BB’ YBFT 15, (29

— 2 —
o= (BRIAM) Dy, y=(B12M)Dpp, (29 enhanced or suppressed according to statistics. Both Egs.
and has the particular feature that it can be written in Lind{(24) and (27) retain the property of complete positivity sat-
blad form in terms of a S|ng|e genera{ﬂrlg] Startmg from isfied by Eqg. (14), are invariant under translation and rota-
Eq. (21) one can perform the same limit of small momentumtion, and admit a stationary solution of the canonical form
transfer corresponding through the physical interpretation op e~ A2 The single generator feature is due to the fact
the dynamic structure factor to the macroscopic, longthat the coefficients satisfy the relationship oD,
wavelength properties of the system, thus calculating the cor=#2y?/4.
rection due to quantum statistics to the master equation de-
scribing quantum Brownian motion. To do this one considers

the Taylor expansion of the logarithms in Eg1), leading to IV. SUMMARY AND OUTLOOK
%he fo_ItIowmg compact expression as a power series in the We have considered the problem of the motion of a test
ugacity z particle interacting through collisions with a fluid, following
Sye(q,E,a<1) the approach outlined ip Refkl4,20,21, which has already
been successfully applied to the case of neutron op2igk
=Sys(9,E,a<1) The microscopic derivation allows some insights into the

conditions under which a master equation of the Lindblad
type, driving a completely positive time evolution, can be
obtained, thus giving a concrete physical example contribut-
ing to the debate on the relevance of complete positivity
(26) [13]. Provided the statistical operator is sufficiently diagonal
in momentum representation with respect to the energy de-
pendence of the dynamic structure factor, the master equa-
tion (20) is obtained, where only quantities of physical inter-
st appear; the scattering cross section for the single two-
ody collisions, given by the square of tflematrix; the
generator of translations in momentum space, and the dy-
namic structure factor, keeping the statistical properties of
~ . 3 the medium into account, combined through the expression
dQ_ | NN z Dpp A A A Aal (i/h)q~;(\/—" . .
T g[HO,Q]— 1=2 2 —Z[Xi %011 L_(q,p,x)—e _ S(q,p)- Th|§ structure is remgrkably
=1 A simple and describes a dynamics in which the motion of the
. test particle is linked through this particular two-point corre-
+—p[pi,o]]+ ! VX APy ,é}]] , (27)  lation function to the spectrum of spontaneous fluctuations of
fi the system. Starting from this general structure and explicitly
calculating the dynamic structure factor for the case of a free
where the coefficient/(1+z) at finite temperature is actu- gas, one can consider the particularly relevant case of
ally well defined becauseis in the range 8z<<1 for Bose = Brownian motion, when the test particle is much heavier
particles and positive for Fermi particles. than the particles making up the gas. In the case of a Boltz-
Equation(27), expressing the correction due to quantummann gas one recovers, for small momentum transfer, a typi-
statistics in the equation describing quantum Brownian moe€al structure of generator of quantum Brownian motion,
tion, together with Eq(20), giving a completely positive given by Eq.(24), in which all coefficients are determined
time evolution for a particle interacting with a macroscopicand the dissipative part of the generator depends linearly on
system at equilibrium in terms of a momentum displacementhe fugacity. The case of a quantum gas is also considered,
operator and the dynamic structure factor of the system, arand in this case the generator has the strudiire with the

k k
—k(ﬁ/am)qze— k(BI2)E eNBE
nZO ’

1+2

k+1

which has to be substituted in E4.3), keeping terms up to
second order im. The result one obtains is actually remark-
ably simple; the operator structure is not changed, nor the
simple generator feature, but the fugacity appears throug
the expressiorz/(1+ z) rather than linearly. For a Bose or
Fermi gas at finite temperature one has
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dissipative part depending on the fugadtyhrough the ex-
pressionz/(1¥ z), thus giving the connectio®9) between

PHYSICAL REVIEW E 63 066115

ing intensively studied both at an experimern@8] and the-
oretical level[24].

the friction coefficients in the different cases.

We hope that this fundamental study on the general fea-
tures of a master equation describing the motion of a test
particle in a gas, putting in major evidence the dynamic
structure factor and showing the relationship between this The author would like to thank Professor L. Lanz for
structure and the equation, analogous to the Fokker-Plandgkany useful suggestions and careful reading of the manu-
equation, describing quantum Brownian motion, could be acript and Professor A. Barchielli for useful discussions. This
sound starting point for future extensions and applicationswork was partially supported by the Alexander von
especially in connection with degenerate regimes at very lotdumboldt-Stiftung and by MURST under Cofinanziamento
temperatures, where the dynamic structure factor is now beand Progetto Giovani.
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